INFORMATIVO

Boletim de Tecnologia e Desenvolvimento de Embalagens

ITAL
INSTITUTO DE TECNOLOGIA DE ALIMENTOS

ISSN 2175-5000

Vol. 25 - nº3 Julho | Agosto | Setembro | 2013

GARRAFAS DE PET DE ÁGUA MINERAL: REDUÇÃO DE PESO X BARREIRA À UMIDADE

Ariane C. M. Goza de Campos Rosa M. V. Alves

As bebidas são itens muito importantes da dieta dos seres humanos e sua comercialização e sofisticação aumentou drasticamente nas últimas décadas. Grande parte desse crescimento pode ser atribuído ao desenvolvimento de embalagens que tornou possível o comércio nacional e internacional de bebidas consumidas em casa, no trabalho em uma infinidade de atividades esportivas, de lazer e de entretenimento (ROBERTSON, 2013).

Atualmente, a água mineral engarrafada é amplamente disponível para venda e, há uma percepção pública de que a água mineral é segura, natural e livre de aditivos, tais como flúor e cloro (ROBERTSON, 2013).

Se tratando de embalagens para bebidas, o poli(tereftalato de etileno) - PET é atualmente o material mais utilizado em garrafas de água mineral e segundo matéria publicada na revista Engarrafador Moderno (2010), existiam aproximadamente 420 marcas de água comercializadas no Brasil em 2010 e o mercado de água mineral em copos, garrafas e garrafões plásticos têm crescido anualmente (RODWAN, 2009). Entre os anos de 2005 a 2010 houve crescimento médio de 4,9% no consumo de água engarrafada e, somente no ano de 2010, este aumento foi de 8,2% (ABIR, 2011), sendo a embalagem uma importante ferramenta de vendas para este setor (EMBALAGENS..., 2010).

Atualmente o PET é uma resina muito conhecida e aplicada como material de embalagens devido às suas excelentes propriedades, tais como: barreira a gases, alta resistência mecânica, transparência, brilho, facilidade de moldagem etc., sendo o material plástico mais indicado para bebidas carbonatadas (OLIVEIRA et al., 2006; ENGEPACK, 2011).

Na década de 90 era comum a fabricação de garrafas para água a partir de resinas de Polietileno de Alta Densidade (PEAD) e Polipropileno (PP). Entretanto, atualmente esses materiais foram substituídos em quase sua totalidade pelo PET. Além disso, o mercado tem adotado terminação e tampa com altura reduzida, mais conhecida como tampa baixa (POSSIBILIDADES..., 2010).

Empresas têm investido parte do faturamento no desenvolvimento de embalagens com peso reduzido, design diferenciado e que causem menor impacto ao meio ambiente (EMBALAGENS..., 2010), em conformidade com o que varejo e sociedade demandam.

Segundo Rotta (2013) pequenas reduções de materiais de embalagem em produções de bilhões de unidades/ano resultam em toneladas de matéria-prima e centenas de milhares de reais poupados.

Boletim de Tecnologia e Desenvolvimento de Embalagens

ISSN 2175-5000

Vol. 25 – nº3 Julho | Agosto | Setembro | 2013

No exterior, segundo Robertson (2013), no final da década de 80, a garrafa PET de 500 ml de água mineral natural pesava aproximadamente 24 g, entretanto em 2011 a indústria desenvolveu garrafas de aproximadamente 10 g, o que representa uma redução de uso de resina PET de aproximadamente 58%.

Pesquisa realizada pela *Beverage Marketing Corporation (BMC)* para a *International Bottled Water Association (IBWA)* mostrou que nos últimos anos a massa da garrafa PET 500 mL de água foi reduzida em aproximadamente 32,6%. Entre os anos de 2000 até 2008, a garrafa PET pesava em média 18,9 gramas, e a quantidade de resina PET em cada garrafa reduziram em média 12,7 gramas, gerando uma grande economia de resina PET (BOTTLEDWATER, 2010).

No entanto, a redução de massa requer várias alterações no processo de fabricação da garrafa. Segundo Cazzaro (2010), a geometria da pré-forma, propriedades e aditivos da resina, *inputs* de calor (secadores e conjuntos extrusores) e sua remoção (no molde e pós-moldagem), etapas de preenchimento e recalque na injeção e movimentos mecânicos do sistema máquina/molde/robô, são aspectos essenciais no desenvolvimento de embalagens com peso reduzido. De acordo com declaração de Alexander Schau (FoodBev.com), além das inovações em equipamentos e no *design* da garrafa, a utilização de nitrogênio no enchimento foi crucial no avanço das garrafas com peso reduzido, de forma a facilitar seu manuseio e transporte (SEARBY, 2009).

Devido à alta permeabilidade ao vapor d'água do PET, a redução na massa das garrafas pode afetar seu desempenho em embalagens de água mineral, principalmente durante a estocagem em locais com baixa umidade relativa, como por exemplo, o centro-oeste do Brasil, podendo gerar não conformidades legais.

A fim de avaliar esta influência verificou-se a perda de massa de água (causando redução de volume) em garrafas PET utilizadas para água mineral natural e gaseificada, quando estocadas em ambientes com baixa umidade relativa e durante o prazo de validade do produto. Esses ensaios foram realizados em embalagens plásticas de água mineral adquiridas no mercado, no período de 2010 a 2013. Foram avaliadas três edições distintas conforme descrito a seguir:

Edição A

- Garrafa de água mineral natural 250 mL;
- Garrafa de água mineral natural 510 mL;
- Garrafa de água mineral natural 1500 mL.

Edição B

- Garrafa de água mineral natural 500 mL;
- Garrafa de água mineral gaseificada 500 mL.

Edição C

• Garrafa de água mineral natural - 500 mL.

As garrafas PET da Edição A eram fechadas com tampas de polipropileno (PP) e as garrafas PET das Edições B e C eram fechadas com tampas de polietileno de alta densidade (PEAD). Todas as garrafas foram avaliadas quanto à determinação da massa, capacidade volumétrica total, dimensões, distribuição de espessura, taxa de transmissão de vapor d'água e estimativa de perda de massa de água durante a estocagem pelo período de vida de prateleira declarado pelo fabricante. A garrafa PET edição C (500 mL) também foi submetida à determinação da composição gasosa do espaço livre da embalagem.

Os resultados apresentados na Tabela 1 caracterizam as garrafas PET de água mineral, quanto à massa, capacidade volumétrica total e dimensões.

Tabela 1. Caracterização dimensional das embalagens de PET.

Edição	Embalagem	Valor ¹	Massa (g)	Capacidade volumétrica total (mL)	Altura total (mm)	Diâmetro do corpo (mm)	Diâmetro do gargalo (mm)
Α	Água natural	Média	17,3	280,4	155,0	57,6	21,5
	250 mL	I.V.	17,2 – 17,4	278,9 - 282,8	154,8 -155,5	57,4 - 57,8	21,2 - 21,6
	Água natural	Média	22,2	541,8	220,5	63,9	21,3
	510 mL	I.V.	22,1 - 22,3	539,4 - 544,6	220,2 - 220,7	63,8 - 64,1	21,2 - 21,5
	Água natural	Média	33,5	1550,2	324,4	87,4	21,4
	1500 mL	I.V.	33,4 - 33,5	1548,6 - 1551,6	324,1 - 324,6	86,8 - 88,3	21,4 - 21,4
	Água natural	Média	15,8	539,9	217,6	62,4	21,4
	500 mL	I.V.	15,8 - 15,8	536,6 - 552,4	217,4 - 217,9	62,2 - 62,6	21,4 - 21,5
В	Água gaseificada 500 mL	Média I.V.	20,7 20,6 - 21,1	538,1 535,1 - 543,6	219,1 218,2 - 219,8	62,5 62,3 - 62,8	21,4 21,4 - 21,6
С	Água natural 500 mL	Média I.V.	12,1 12,1 - 12,1	546,2 543,5 - 553,3	219,0 218,6 - 219,2	61,8 61,1 - 62,4	21,3 21,1 - 21,6

Fonte: CETEA

Verifica-se na Tabela 1 uma redução na massa de resina PET de 22 g para 16 g quando foi alterada a capacidade volumétrica de água mineral de 510 mL (Edição A) para 500 mL (Edição B), com redução de 27% na quantidade de resina PET. A partir da Edição B houve redução da altura da terminação e adoção de uma tampa baixa. A quantidade de resina PET na garrafa de 500 mL (Ed. B) de água gaseificada (21 g) é superior à utilizada na garrafa de 500 mL (Ed. B) de água natural (16 g) provavelmente visando retenção do teor de gás carbônico a níveis compatíveis com o tempo de vida de prateleira deste tipo de água.

Comparando-se a garrafa de água natural 500 mL (Ed. B) com a garrafa 500 mL (Ed. C), verifica-se a redução de resina PET de 16 g para 12 g respectivamente, o que equivale a uma redução de 25% na massa de PET. Esta massa é ainda um pouco superior ao apresentado por Robertosn (2013) para garrafas de água mineral de 500 mL de aproximadamente 10 g.

Todas as reduções de massa de PET levaram a menor espessura e maior taxa de transmissão ao vapor d'água da embalagem como será discutido na sequência deste trabalho.

Na Tabela 2 é apresentada a distribuição de espessura mínima das garrafas PET de água mineral natural e gaseificada.

I.V. – Intervalo de Variação.

^{1 –} Resultados de 5 determinações.

Tabela 2 Distribuição de espessura mínima nas garrafas de PET.

	- Combologom	Valor ¹	Espessura (mm)		
Edição	Embalagem	Valor	Ombro	Corpo	Calcanhar
	Água natural	Média	0,21	0,29	0,30
	250 mL	I.V.	0,20 - 0,23	0,24 - 0,31	0,27 - 0,32
Α	Água natural	Média	0,21	0,22	0,24
A	510 mL	I.V.	0,20 - 0,22	0,20 - 0,23	0,22 - 0,25
	Água natural	Média	0,20	0,24	0,16
	1500 mL	I.V.	0,19 - 0,21	0,23 - 0,24	0,14 - 0,18
	Água natural	Média	0,15	0,22	0,14
В	500 mL	I.V.	0,14 - 0,15	0,20 - 0,26	0,13 - 0,14
Ь	Água gaseificada	Média	0,20	0,23	0,26
	500 mL	I.V.	0,20 - 0,20	0,22 - 0,23	0,26 - 0,28
С	Água natural	Média	0,08	0,07	0,06
	500 mL	I.V.	0,07 - 0,09	0,06 - 0,08	0,06 - 0,07

Fonte: CETEA

I.V. – Intervalo de Variação.

Entre as seis amostras de garrafas PET de água mineral avaliadas, verifica-se na Tabela 2 que a de 250 mL (Ed. A) foi a que apresentou maiores espessuras mínimas e a de 500 mL (Ed. C) apresentou as menores espessuras, ambas na região do ombro e calcanhar. Também se verificou espessura reduzida na região do calcanhar da garrafa de 1500 mL (Ed. A) e no corpo da garrafa de 500 mL (Ed. C).

Para compensar a redução da espessura, verificou-se na determinação da composição gasosa, que a garrafa de 500 mL (Ed. C) apresentou em média 12% de oxigênio e 89% de nitrogênio no espaço livre, o que sugere o enchimento com injeção de nitrogênio para aumentar a pressão interna e conferir rigidez à embalagem enquanto fechada.

Quanto menor é a embalagem, maior é a relação área da embalagem / quantidade de produto. Assim, quanto menor for a embalagem, menor deve ser a taxa de transmissão de vapor d'água, o que pode ser obtido utilizando-se embalagens de maior espessura para que a perda de massa de produto durante a estocagem em ambientes com baixa umidade relativa esteja dentro da conformidade legal.

Nas Tabelas 3 e 4 são apresentados os valores de transmissão ao vapor de água das embalagens PET para água natural e gaseificada e a estimativa de perda de massa durante os prazos de validade praticados pelos fabricantes, sob estocagem a 30°C/30%UR.

^{1 -} Resultados de 10 determinações.

Tabela 3. Taxas de transmissão ao vapor de água das garrafas PET de água natural a 30ºC/30%UR*.

ISSN 2175-5000

Edição	Embalagem	Valor ¹	Taxa de transmissão ao vapor de água (g água. embalagem ⁻¹ .dia ⁻¹)	Perda de massa média (270 dias a 30°C/30%UR) (g)	
	Água natural	Média	0,03	- 8,1	
	250 mL	I.V.	0,02 – 0,03		
А	Água natural	Média	0,04	- 10,8	
A	510 mL	I.V.	0,04 – 0,05	- 10,6	
	Água natural	Média	0,10	- 27,0	
	1500 mL	I.V.	0,10 - 0,10	- 27,0	
В	Água natural	Média	0,06	- 16,2	
ט	500 mL	I.V.	0,06 – 0,06	10,2	
С	Água natural	Média	0,07	- 18,9	
C	500 mL	I.V.	0,06 – 0,08	- 10,3	

Fonte: CETEA

Tabela 4. Taxa de transmissão ao vapor de água da garrafa PET de água gaseificada a 30ºC/30%UR*.

Edição	Edição Embalagem		Taxa de transmissão ao vapor de água (g água. embalagem ⁻¹ .dia ⁻¹)	Perda de massa média (120 dias a 30°C/30%UR) (g)	
В	Água gaseificada 500 mL	Média	0,05 0,05 – 0,06	6,0	
	300 1112	I.V.	0,00		

Fonte: CETEA

Em estudo de GOZA & ALVES (2011), foi verificado que a permeação de vapor d'água pela parede da garrafa PET de água mineral é superior à permeação/entrada de vapor de água pelo sistema de fechamento. Portanto, a barreira à umidade de embalagens PET é dependente das dimensões (maior área de embalagem, maior área para permeação) e da espessura, que foram os dois fatores que levaram à maior permeação de umidade na garrafa PET de 1500 mL (Ed. A) e à maior barreira à umidade da garrafa de 250 mL (Ed. A).

Através dos resultados apresentados na Tabela 3, verifica-se que com a redução da quantidade de resina e, consequentemente, de espessura, a garrafa de 500 mL (Ed. C) apresentou a maior perda de massa de água mineral entre todas as garrafas de mesmo volume (500 mL) avaliadas.

Observa-se na Tabela 1 que as garrafas de 500 mL (Ed. B) para água gaseificada apresentava maior quantidade de resina PET (21 g contra 16 g da garrafa de mesma capacidade de água natural) e consequentemente maiores espessuras mínimas (Tabela 2) o que colabora para maior retenção do gás carbônico e menor perda de água durante estocagem em locais de alta temperatura e baixa umidade relativa (Tabela 4). Também contribuiu para a menor perda de massa, estimada na Tabela 4, o menor prazo

^{*100%}UR no interior da embalagem e 30%UR na câmara de estocagem

I.V.- Intervalo de Variação.

^{1 –} Resultados de 10 determinações.

²⁷⁰ dias – tempo de vida útil de água natural declarada pelo fabricante.

^{*100%}UR no interior da embalagem e 30%UR na câmara de estocagem

I.V. – Intervalo de Variação.

^{1 –} Resultados de 10 determinações.

¹²⁰ dias – tempo de vida útil de água gaseificada declarada pelo fabricante.

Vol. 25 – nº2

Julho | Agosto | Setembro | 2013

de vida de prateleira praticado pelo fabricante para água gaseificada que é de 3 meses (120 dias) em comparação com a água natural que é de 9 meses (270 dias).

Para estarem em conformidade com a Portaria nº 248, de 17 de julho de 2008 do INMETRO, que estabelece os critérios para verificação do conteúdo líquido de produtos pré-medidos com conteúdo nominal igual, comercializados nas grandezas de massa e volume (BRASIL, 2008), as empresas engarrafadoras podem utilizar sobrepeso de água mineral no momento do enchimento. Assim, a perda de massa de água mineral é compensada quando a embalagem com produto é estocada em ambiente com alta temperatura e baixa umidade relativa de forma a atender aos limites de volumes especificados na legislação, durante o prazo de validade do produto.

Conclusão

Os resultados obtidos demonstram que os efeitos de redução de massa de material de embalagem devem ser avaliados em todos os seus aspectos para evitar o comprometimento de funções importantes da embalagem.

Sob longos períodos de estocagem em locais de alta temperatura e baixa umidade relativa, as garrafas PET podem apresentar diferença entre o conteúdo nominal e o real de água mineral, efeito provocado pela permeação de vapor de água pelo material de embalagem, o que pode resultar em problemas legais. Para prevenir o problema de perda de massa/volume de água mineral nesses locais durante o tempo de validade, o fabricante poderia utilizar sobrepeso de água no enchimento sendo que este sobrepeso precisa ser revisto quando é reduzida a espessura da embalagem, de forma a atender a legislação em relação ao conteúdo líquido de produtos pré-medidos.

REFERÊNCIAS

BRASIL. INMETRO. Portaria Inmetro n. 248 de 17 de julho de 2008. Regulamento Técnico Metrológico que estabelece os critérios para verificação do conteúdo líquido de produtos pré-medidos com conteúdo nominal igual, comercializados nas grandezas de massa e volume. Disponível em:

http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC001339.pdf>. Acesso em: 19 set. 2013.

ASSOCIAÇÃO BRASILEIRA DAS INDUSTRIAS DE REFRIGERANTES E BEBIDAS NÃO ALCOÓLICAS. Consumo de todas as bebidas comerciais 2005-2010 - **BNA Brasil Relatório 2011 - ABIR**. Disponível em:

http://abir.org.br/wp-content/plugins/download-monitor/download.php?id=322. Acesso em: 25/09/13.

BOTTLEDWATER. Weight of PET bottled water containers has decreased 32,6% over past eight years, saving 1.3 billon lbs. of plastic. February 18, 2010. Disponível em:

http://www.bottledwater.org/news/weight-pet-bottled-water-containers-has-decreased-326-over-past-eight-years. Acesso em: 25/09/2013.

CAZZARO, E. A dieta da água: depoimento. [abr. 2010]. **Plásticos em Revista**, v. 48, n. 558. Entrevista concedida à revista.

EMBALAGENS atraem consumidores. Engarrafador Moderno, v. 21, n. 196, p. 14-20, set. 2010.

ENGEPACK. **Histórico da resina**. Disponível em: < http://www.engepack.com.br/ContentView.php?Id=330>. Acesso em: 27 fev. 2011.

SEARBY, Lynda. **Is lightweighting shaping the bottled water industry?**. 30 Jun 2009. Disponível em: http://www.foodbev.com/news/not-a-lot-of-bottle>. Acesso: 25/09/2013.

GOZA, Ariane C. M.; ALVES, Rosa M. V. Barreira à umidade de garrafas PET de água mineral. In: CONGRESSO BRASILEIRO DE POLÍMEROS, 11., 2011, Campos do Jordão. **Anais...** São Carlos: ABPol, 2011.

Boletim de Tecnologia e Desenvolvimento de Embalagens

ISSN 2175-5000

Vol. 25 - nº3 Julho | Agosto | Setembro | 2013

OLIVEIRA, L. M. (Ed.). **Requisitos de proteção de produtos em embalagens plásticas rígidas.** Campinas, SP: ITAL/CETEA, 2006. 328 p.

POSSIBILIDADES abertas. Embanews, São Paulo, v. 21, n. 247, out. 2010.

ROBERTSON, G. L. Packaging of beverages. In: ______. **Food packaging**: principles and practice. 3 ed. Boca Raton, FL: CRC Press, 2013. Chapter 21, p. 577-579.

ROBERTSON, G. L. Food Packaging and Sustainability. In: _____. **Food packaging**: principles and practice. 3 ed. Boca Raton, FL: CRC Press, 2013. Chapter 23, p. 648-649.

RODWAN Jr, J. G. Uma análise da evolução do mercado de águas e tendências comparativas com outras categorias de bebidas. **Água & Vida**, São Paulo, v. 2, n. 59, p. 40-47, 2009.

ROTTA, S. Menos massa, mais alívio: depoimento. [mar. 2013]. São Paulo: **Revista Embalagem Marca.** v. 14, n. 163, p. 30-33. Entrevista concedida a Guilherme Kamio.